Modeling developmental transitions in adaptive resonance theory.

نویسندگان

  • Maartje E J Raijmakers
  • Peter C M Molenaar
چکیده

Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire qualitatively new knowledge. First, it is shown that biological principles of neurite outgrowth result in self-organization in a neural network, which is strongly dependent on a bifurcation in the activity dynamics. Second, the effect of a bifurcation due to morphological change is investigated in an Adaptive Resonance Theory (ART) network. Exact ART networks with quantitative differences in network structure at the category level show qualitatively different dynamical regimes, which are separated by bifurcations. These qualitative differences in dynamics affect the cognitive function of Exact ART: Representations of learned categories are local or distributed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Network That Learns Sequences of Transitions

We describe an adaptive network, TIN2, that learns the transition function of a sequential system from observations of its behavior. It integrates two subnets, TIN-I (Winter, Ryan and Turner, 1987) and TIN-2. TIN-2 constructs state representations from examples of system behavior, and its dynamics are the main topics of the paper. TIN-I abstracts transition functions from noisy state representa...

متن کامل

Linking Complexity and Sustainability Theories: Implications for Modeling Sustainability Transitions

In this paper, we deploy a complexity theory as the foundation for integration of different theoretical approaches to sustainability and develop a rationale for a complexity-based framework for modeling transitions to sustainability. We propose a framework based on a comparison of complex systems’ properties that characterize the different theories that deal with transitions to sustainability. ...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Couple Stress Effect on Micro/Nanocantilever-based Capacitive Gas Sensor

Micro/nanocantilevers have been employed as sensors in many applications including chemical and biosensing. Due to their high sensitivity and potential for scalability, miniature sensing systems are in wide use and will likely become more prevalent in micro/nano-electromechanical systems (M-NEMSs). This paper is mainly focused on the use of sensing systems that employ micro/nano-size cantilever...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental science

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2004